Hibridación y números cuánticos
En química, se habla de hibridación cuando en un átomo se mezcla varios orbitales atómicos para formar nuevos orbitales híbridos. Los orbitales híbridos explican la forma en que se disponen los electrones en la formación de los enlaces, dentro de la teoría del enlace de valencia, y justifican la geometría las moléculas.
Orbitales
Los electrones de un átomo tienen la tendencia de ubicarse en orbitales específicos alrededor del núcleo, lo cual se enuncia en la ecuación de Schrödinger. Los detalles sobre número y orientación de electrones en cada orbital depende de las propiedades energéticas descritas por los números cuánticos. El primer orbital, el más cercano al núcleo es el llamado 1s y solo puede ser ocupado por dos electrones. Un átomo con un solo electrón (hidrógeno) y uno con dos electrones (helio) ubican su(s) electrón(es) en este orbital.
Un átomo con 3 (litio) y cuatro (berilio) electrones tendrá que ubicar el tercer y cuarto electrón en el siguiente orbital, llamado 2s, el cual también solo acepta dos electrones.
El átomo de carbono tiene seis electrones: dos se ubican en el orbital 1s (1s²), dos en el 2s (2s²) y los restantes dos en el orbital 2p (2p²). Debido a su orientación en el plano tridimensional el orbital 2p tiene capacidad para ubicar 6 electrones: 2 en el eje de las x, dos en el eje de las y y dos electrones en el eje de las z. Los dos últimos electrones del carbono se ubicarían uno en el 2px, el otro en el 2py y el orbital 2pz permanece vacío (2px¹ 2py¹). El esquema de lo anterior es (cada flecha un electrón):
Para satisfacer su estado energético inestable, un átomo de valencia como el del carbono, con orbitales parcialmente llenos (2px y 2py necesitarían tener dos electrones) tiende a formar enlaces con otros átomos que tengan electrones disponibles. Para ello, no basta simplemente colocar un electrón en cada orbital necesitado. En la naturaleza, éste tipo de átomos redistribuyen sus electrones formando orbitales híbridos. En el caso del carbono, uno de los electrones del orbital 2s es extraido y se ubica en el orbital 2pz. Así, los cuatro últimos orbitales tienen un electrón cada uno:
El estímulo para excitar al electrón del 2s al 2pz es aportado por el primer electrón en formar enlace con un átomo con este tipo de valencia. Por ejemplo, el hidrógeno en el caso del metano. Esto a su vez incrementa la necesidad de llenado de los restantes orbitales. Estos nuevos orbitales híbridos dejan de ser llamados 2s y 2p y son ahora llamados sp3 (un poco de ambos orbitales):
De los cuatro orbitales así formados, uno (25%) es proveniente del orbital s (el 2s) del carbono y tres (75%) provenientes de los orbitales p (2p). Sin embargo todos se sobreponen al aportar la hibridación producto del enlace. Tridimensionalmente, la distancia entre un hidrógeno y el otro en el metano son equivalentes e iguales a un ángulo de 109°.
Se define como la combinacion de un orbital S y 2 P, para formar 3 orbitales híbridos, que se disponen en un plano formando ángulos de 120º.
Los átomos que forman hibridaciones sp2 pueden formar compuestos con enlaces dobles. Forman un ángulo de 120º y su molécula es de forma plana. A los enlaces simples se les conoce como enlaces sigma (σ) y los enlaces dobles están compuestos por un enlace sigma y un enlace pi (π). Las reglas de ubicación de los electrones en estos casos, como el alqueno etileno obligan a una hibridación distinta llamada sp2, en la cual un electrón del orbital 2s se mezcla sólo con dos de los orbitales 2p: surge a partir o al unirse el orbital s con dos orbitales p; por consiguiente, se producen tres nuevos orbitales sp2, cada orbital nuevo produce enlaces covalentes
Tridimensionalmente, la distancia entre un hidrógeno y otro en algún carbono del etileno son equivalentes e iguales a un ángulo de 120°.
Se define como la combinacion de un orbital S y un P, para formar 2 orbitales híbridos, con orientacion lineal. Este es el tipo de enlace híbrido, con un ángulo de 180º y que se encuentra existente en compuestos con triples enlaces como los alquinos (por ejemplo el acetileno):
se caracteriza por la presencia de 2 orbitales pi(π).
Los números cuánticos son valores numéricos que nos indican las características de los electrones de los átomos, esto esta basado desde luego en la teoría atómica de Neils Bohr que es el modelo atómico mas aceptado y utilizado en los últimos tiempos.
Los números atómicos más importantes son cuatro:
Número Cuántico Principal.
Número Cuántico Secundario.
Número Cuántico Magnético.
Número Cuántico de Spin.
Número Cuántico Principal (n)
El número cuántico principal nos indica en que nivel se encuentra el electrón, este valor toma valores enteros del 1 al 7.
Número Cuántico Secundario (d)
Este número cuántico nos indica en que subnivel se encuentra el electrón, este número cuántico toma valores desde 0 hasta (n - 1), según el modelo atómico de Bohr - Sommerfield existen además de los niveles u orbitas circulares, ciertas órbitas elípticas denominados subniveles. Según el número atómico tenemos los numeros:
l = 0 s sharp
l = 1 p principal
l = 2 d diffuse
l = 3 f fundamental
l = 4 g
l = 5 h
l = 6 i
Número Cuántico Magnético (m)
El número cuántico magnético nos indica las orientaciones de los orbitales magnéticos en el espacio, los orbitales magnéticos son las regiones de la nube electrónica donde se encuentran los electrones, el número magnético depende de l y toma valores desde -l hasta l.
Número Cuántico de Spin (s)
El número cuántico de spin nos indica el sentido de rotación en el propio eje de los electrones en un orbital, este número toma los valores de −1/2 y de 1/2.
De esta manera entonces se puede determinar el lugar donde se encuentra un electrón determinado, y los niveles de energía del mismo, esto es importante en el estudio de las radiaciones, la energía de ionización, así como de la energía liberada por un átomo en una reacción.
Principio de Exclusión de Pauli
El mismo dice “En un mismo átomo no puede existir dos electrones que tengan los mismos números cuánticos” de esta manera podemos entonces afirmar que en un mismo orbital no puede haber más de dos electrones y que los mismos deben tener distinto número de spin.
Regla de Hund
Cuando se llena orbitales con un mismo nivel de energía o lo que es lo mismo que se encuentran en un mismo subnivel se debe empezar llenando la mitad del subnivel con electrones de spin +1/2 para luego proceder a llenar los subniveles con electrones de spin contrario (−1/2).
No hay comentarios:
Publicar un comentario